Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Med ; 29(5): 1146-1154, 2023 05.
Article in English | MEDLINE | ID: covidwho-2320083

ABSTRACT

Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.


Subject(s)
COVID-19 , Obesity, Morbid , Humans , COVID-19 Vaccines , Longitudinal Studies , Prospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Obesity/epidemiology , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
2.
Thorax ; 77(5): 497-504, 2022 05.
Article in English | MEDLINE | ID: covidwho-2319349

ABSTRACT

BACKGROUND: The QCovid algorithm is a risk prediction tool that can be used to stratify individuals by risk of COVID-19 hospitalisation and mortality. Version 1 of the algorithm was trained using data covering 10.5 million patients in England in the period 24 January 2020 to 30 April 2020. We carried out an external validation of version 1 of the QCovid algorithm in Scotland. METHODS: We established a national COVID-19 data platform using individual level data for the population of Scotland (5.4 million residents). Primary care data were linked to reverse-transcription PCR (RT-PCR) virology testing, hospitalisation and mortality data. We assessed the performance of the QCovid algorithm in predicting COVID-19 hospitalisations and deaths in our dataset for two time periods matching the original study: 1 March 2020 to 30 April 2020, and 1 May 2020 to 30 June 2020. RESULTS: Our dataset comprised 5 384 819 individuals, representing 99% of the estimated population (5 463 300) resident in Scotland in 2020. The algorithm showed good calibration in the first period, but systematic overestimation of risk in the second period, prior to temporal recalibration. Harrell's C for deaths in females and males in the first period was 0.95 (95% CI 0.94 to 0.95) and 0.93 (95% CI 0.92 to 0.93), respectively. Harrell's C for hospitalisations in females and males in the first period was 0.81 (95% CI 0.80 to 0.82) and 0.82 (95% CI 0.81 to 0.82), respectively. CONCLUSIONS: Version 1 of the QCovid algorithm showed high levels of discrimination in predicting the risk of COVID-19 hospitalisations and deaths in adults resident in Scotland for the original two time periods studied, but is likely to need ongoing recalibration prospectively.


Subject(s)
COVID-19 , Adult , Algorithms , Calibration , Cohort Studies , Female , Hospitalization , Humans , Male , Scotland/epidemiology
3.
4.
Arch Dis Child Fetal Neonatal Ed ; 108(4): 367-372, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2193641

ABSTRACT

OBJECTIVES: To examine neonates in Scotland aged 0-27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. DESIGN: Population-based cohort study. SETTING AND POPULATION: All live births in Scotland, 1 March 2020-31 January 2022. RESULTS: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. IMPLICATIONS AND RELEVANCE: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Infant , Child , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/diagnosis , SARS-CoV-2 , Cohort Studies , Scotland/epidemiology , Pregnancy Outcome/epidemiology
6.
Lancet ; 400(10360): 1305-1320, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-2069811

ABSTRACT

BACKGROUND: Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine. METHODS: We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses. FINDINGS: Between Dec 8, 2020, and Feb 28, 2022, 16 208 600 individuals completed their primary vaccine schedule and 13 836 390 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·4%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18-49 years; aRR 3·60 [95% CI 3·45-3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07-9·97]), being male (male vs female; 1·23 [1·20-1·26]), and those with certain underlying health conditions-in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53-6·09])-and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90-4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29-0·58]). INTERPRETATION: Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics. FUNDING: National Core Studies-Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.


Subject(s)
COVID-19 , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , England/epidemiology , Female , Humans , Immunization, Secondary , Immunosuppressive Agents , Male , Northern Ireland , Prospective Studies , SARS-CoV-2 , Scotland , Vaccination , Wales/epidemiology
7.
Sci Rep ; 12(1): 16406, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-2050525

ABSTRACT

There is a need for better understanding of the risk of thrombocytopenic, haemorrhagic, thromboembolic disorders following first, second and booster vaccination doses and testing positive for SARS-CoV-2. Self-controlled cases series analysis of 2.1 million linked patient records in Wales between 7th December 2020 and 31st December 2021. Outcomes were the first diagnosis of thrombocytopenic, haemorrhagic and thromboembolic events in primary or secondary care datasets, exposure was defined as 0-28 days post-vaccination or a positive reverse transcription polymerase chain reaction test for SARS-CoV-2. 36,136 individuals experienced either a thrombocytopenic, haemorrhagic or thromboembolic event during the study period. Relative to baseline, our observations show greater risk of outcomes in the periods post-first dose of BNT162b2 for haemorrhagic (IRR 1.47, 95%CI: 1.04-2.08) and idiopathic thrombocytopenic purpura (IRR 2.80, 95%CI: 1.21-6.49) events; post-second dose of ChAdOx1 for arterial thrombosis (IRR 1.14, 95%CI: 1.01-1.29); post-booster greater risk of venous thromboembolic (VTE) (IRR-Moderna 3.62, 95%CI: 0.99-13.17) (IRR-BNT162b2 1.39, 95%CI: 1.04-1.87) and arterial thrombosis (IRR-Moderna 3.14, 95%CI: 1.14-8.64) (IRR-BNT162b2 1.34, 95%CI: 1.15-1.58). Similarly, post SARS-CoV-2 infection the risk was increased for haemorrhagic (IRR 1.49, 95%CI: 1.15-1.92), VTE (IRR 5.63, 95%CI: 4.91, 6.4), arterial thrombosis (IRR 2.46, 95%CI: 2.22-2.71). We found that there was a measurable risk of thrombocytopenic, haemorrhagic, thromboembolic events after COVID-19 vaccination and infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombocytopenia , Venous Thromboembolism , BNT162 Vaccine , COVID-19/complications , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Hemorrhage , Humans , SARS-CoV-2 , Thrombocytopenia/chemically induced , Thrombocytopenia/epidemiology , Vaccination/adverse effects , Venous Thromboembolism/chemically induced , Wales/epidemiology
8.
Lancet Reg Health Eur ; 23: 100513, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2049611

ABSTRACT

Background: The two-dose BNT162b2 (Pfizer-BioNTech) vaccine has demonstrated high efficacy against COVID-19 disease in clinical trials of children and young people (CYP). Consequently, we investigated the uptake, safety, effectiveness and waning of the protective effect of the BNT162b2 against symptomatic COVID-19 in CYP aged 12-17 years in Scotland. Methods: The analysis of the vaccine uptake was based on information from the Turas Vaccination Management Tool, inclusive of Mar 1, 2022. Vaccine safety was evaluated using national data on hospital admissions and General Practice (GP) consultations, through a self-controlled case series (SCCS) design, investigating 17 health outcomes of interest. Vaccine effectiveness (VE) against symptomatic COVID-19 disease for Delta and Omicron variants was estimated using a test-negative design (TND) and S-gene status in a prospective cohort study using the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. The waning of the VE following each dose of BNT162b2 was assessed using a matching process followed by conditional logistic regression. Findings: Between Aug 6, 2021 and Mar 1, 2022, 75.9% of the 112,609 CYP aged 16-17 years received the first and 49.0% the second COVID-19 vaccine dose. Among 237,681 CYP aged 12-15 years, the uptake was 64.5% and 37.2%, respectively. For 12-17-year-olds, BNT162b2 showed an excellent safety record, with no increase in hospital stays following vaccination for any of the 17 investigated health outcomes. In the 16-17-year-old group, VE against symptomatic COVID-19 during the Delta period was 64.2% (95% confidence interval [CI] 59.2-68.5) at 2-5 weeks after the first dose and 95.6% (77.0-99.1) at 2-5 weeks after the second dose. The respective VEs against symptomatic COVID-19 in the Omicron period were 22.8% (95% CI -6.4-44.0) and 65.5% (95% CI 56.0-73.0). In children aged 12-15 years, VE against symptomatic COVID-19 during the Delta period was 65.4% (95% CI 61.5-68.8) at 2-5 weeks after the first dose, with no observed cases at 2-5 weeks after the second dose. The corresponding VE against symptomatic COVID-19 during the Omicron period were 30.2% (95% CI 18.4-40.3) and 81.2% (95% CI 77.7-84.2). The waning of the protective effect against the symptomatic disease began after five weeks post-first and post-second dose. Interpretation: During the study period, uptake of BNT162b2 in Scotland has covered more than two-thirds of CYP aged 12-17 years with the first dose and about 40% with the second dose. We found no increased likelihood of admission to hospital with a range of health outcomes in the period after vaccination. Vaccination with both doses was associated with a substantial reduction in the risk of COVID-19 symptomatic disease during both the Delta and Omicron periods, but this protection began to wane after five weeks. Funding: UK Research and Innovation (Medical Research Council); Research and Innovation Industrial Strategy Challenge Fund; Chief Scientist's Office of the Scottish Government; Health Data Research UK; National Core Studies - Data and Connectivity.

9.
J Glob Health ; 12: 05044, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2040350

ABSTRACT

Background: There is considerable policy, clinical and public interest about whether children should be vaccinated against SARS-CoV-2 and, if so, which children should be prioritised (particularly if vaccine resources are limited). To inform such deliberations, we sought to identify children and young people at highest risk of hospitalization from COVID-19. Methods: We used the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) platform to undertake a national incident cohort analysis to investigate the risk of hospitalization among 5-17 years old living in Scotland in risk groups defined by the living risk prediction algorithm (QCOVID). A Cox proportional hazard model was used to derive hazard ratios (HR) and 95% confidence intervals (CIs) for the association between risk groups and COVID-19 hospital admission. Adjustments were made for age, sex, socioeconomic status, co-morbidity, and prior hospitalization. Results: Between March 1, 2020 and November 22, 2021, there were 146 183 (19.4% of all 752 867 children in Scotland) polymerase chain reaction (PCR) confirmed SARS-CoV-2 infections among 5-17 years old. Of those with confirmed infection, 973 (0.7%) were admitted to hospital with COVID-19. The rate of COVID-19 hospitalization was higher in those within each QCOVID risk group compared to those without the condition. Similar results were found in age stratified analyses (5-11 and 12-17 years old). Risk groups associated with an increased risk of COVID-19 hospital admission, included (adjusted HR, 95% CIs): sickle cell disease 14.35 (8.48-24.28), chronic kidney disease 11.34 (4.61-27.87), blood cancer 6.32 (3.24-12.35), rare pulmonary diseases 5.04 (2.58-9.86), type 2 diabetes 3.04 (1.34-6.92), epilepsy 2.54 (1.69-3.81), type 1 diabetes 2.48 (1.47-4.16), Down syndrome 2.45 (0.96-6.25), cerebral palsy 2.37 (1.26-4.47), severe mental illness 1.43 (0.63-3.24), fracture 1.41 (1.02-1.95), congenital heart disease 1.35 (0.82-2.23), asthma 1.28 (1.06-1.55), and learning disability (excluding Down syndrome) 1.08 (0.82-1.42), when compared to those without these conditions. Although our Cox models were adjusted for a number of potential confounders, residual confounding remains a possibility. Conclusions: In this national study, we observed an increased risk of COVID-19 hospital admissions among school-aged children with specific underlying long-term health conditions compared with children without these conditions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Down Syndrome , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Hospitalization , Humans , SARS-CoV-2 , Scotland/epidemiology
11.
Lancet Infect Dis ; 22(11): 1577-1586, 2022 11.
Article in English | MEDLINE | ID: covidwho-1977931

ABSTRACT

BACKGROUND: Little is known about vaccine effectiveness over time among adolescents, especially against the SARS-CoV-2 omicron (B.1.1.529) variant. This study assessed the associations between time since two-dose vaccination with BNT162b2 and the occurrence of symptomatic SARS-CoV-2 infection and severe COVID-19 among adolescents in Brazil and Scotland. METHODS: We did test-negative, case-control studies in adolescents aged 12-17 years with COVID-19-related symptoms in Brazil and Scotland. We linked records of SARS-CoV-2 RT-PCR and antigen tests to national vaccination and clinical records. We excluded tests from individuals who did not have symptoms, were vaccinated before the start of the national vaccination programme, received vaccines other than BNT162b2 or a SARS-CoV-2 booster dose of any kind, or had an interval between their first and second dose of fewer than 21 days. Additionally, we excluded negative SARS-CoV-2 tests recorded within 14 days of a previous negative test, negative tests recorded within 7 days after a positive test, any test done within 90 days after a positive test, and tests with missing sex and location information. Cases (SARS-CoV-2 test-positive adolescents) and controls (test-negative adolescents) were drawn from a sample of individuals in whom tests were collected within 10 days of symptom onset. We estimated the adjusted odds ratio and vaccine effectiveness against symptomatic COVID-19 for both countries and against severe COVID-19 (hospitalisation or death) for Brazil across fortnightly periods. FINDINGS: We analysed 503 776 tests from 2 948 538 adolescents in Brazil between Sept 2, 2021, and April 19, 2022, and 127 168 tests from 404 673 adolescents in Scotland between Aug 6, 2021, and April 19, 2022. Vaccine effectiveness peaked at 14-27 days after the second dose in both countries during both waves, and was significantly lower against symptomatic infection during the omicron-dominant period in Brazil (64·7% [95% CI 63·0-66·3]) and in Scotland (82·6% [80·6-84·5]), than it was in the delta-dominant period (80·7% [95% CI 77·8-83·3] in Brazil and 92·8% [85·7-96·4] in Scotland). Vaccine efficacy started to decline from 27 days after the second dose for both countries, reducing to 5·9% (95% CI 2·2-9·4) in Brazil and 50·6% (42·7-57·4) in Scotland at 98 days or more during the omicron-dominant period. In Brazil, protection against severe disease remained above 80% from 28 days after the second dose and was 82·7% (95% CI 68·8-90·4) at 98 days or more after receiving the second dose. INTERPRETATION: We found waning vaccine protection of BNT162b2 against symptomatic COVID-19 infection among adolescents in Brazil and Scotland from 27 days after the second dose. However, protection against severe COVID-19 outcomes remained high at 98 days or more after the second dose in the omicron-dominant period. Booster doses for adolescents need to be considered. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Health Data Research UK BREATHE Hub, Fiocruz, Fazer o Bem Faz Bem programme, Brazilian National Research Council, and Wellcome Trust. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Brazil/epidemiology , Case-Control Studies , BNT162 Vaccine , Vaccine Efficacy , SARS-CoV-2
12.
EClinicalMedicine ; 49: 101462, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1850967

ABSTRACT

Background: Uncontrolled infection and lockdown measures introduced in response have resulted in an unprecedented challenge for health systems internationally. Whether such unprecedented impact was due to lockdown itself and recedes when such measures are lifted is unclear. We assessed the short- and medium-term impacts of the first lockdown measures on hospital care for tracer non-COVID-19 conditions in England, Scotland and Wales across diseases, sexes, and socioeconomic and ethnic groups. Methods: We used OpenSAFELY (for England), EAVEII (Scotland), and SAIL Databank (Wales) to extract weekly hospital admission rates for cancer, cardiovascular and respiratory conditions (excluding COVID-19) from the pre-pandemic period until 25/10/2020 and conducted a controlled interrupted time series analysis. We undertook stratified analyses and assessed admission rates over seven months during which lockdown restrictions were gradually lifted. Findings: Our combined dataset included 32 million people who contributed over 74 million person-years. Admission rates for all three conditions fell by 34.2% (Confidence Interval (CI): -43.0, -25.3) in England, 20.9% (CI: -27.8, -14.1) in Scotland, and 24.7% (CI: -36.7, -12.7) in Wales, with falls across every stratum considered. In all three nations, cancer-related admissions fell the most while respiratory-related admissions fell the least (e.g., rates fell by 40.5% (CI: -47.4, -33.6), 21.9% (CI: -35.4, -8.4), and 19.0% (CI: -30.6, -7.4) in England for cancer, cardiovascular-related, and respiratory-related admissions respectively). Unscheduled admissions rates fell more in the most than the least deprived quintile across all three nations. Some ethnic minority groups experienced greater falls in admissions (e.g., in England, unscheduled admissions fell by 9.5% (CI: -20.2, 1.2) for Whites, but 44.3% (CI: -71.0, -17.6), 34.6% (CI: -63.8, -5.3), and 25.6% (CI: -45.0, -6.3) for Mixed, Other and Black ethnic groups respectively). Despite easing of restrictions, the overall admission rates remained lower in England, Scotland, and Wales by 20.8%, 21.6%, and 22.0%, respectively when compared to the same period (August-September) during the pre-pandemic years. This corresponds to a reduction of 26.2, 23.8 and 30.2 admissions per 100,000 people in England, Scotland, and Wales respectively. Interpretation: Hospital care for non-COVID diseases fell substantially across England, Scotland, and Wales during the first lockdown, with reductions persisting for at least six months. The most deprived and minority ethnic groups were impacted more severely. Funding: This work was funded by the Medical Research Council as part of the Lifelong Health and Wellbeing study as part of National Core Studies (MC_PC_20030). SVK acknowledges funding from the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE - The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. BG has received research funding from the NHS National Institute for Health Research (NIHR), the Wellcome Trust, Health Data Research UK, Asthma UK, the British Lung Foundation, and the Longitudinal Health and Wellbeing strand of the National Core Studies programme.

13.
PLoS Med ; 19(2): e1003916, 2022 02.
Article in English | MEDLINE | ID: covidwho-1703635

ABSTRACT

BACKGROUND: In 2020, the SARS-CoV-2 (COVID-19) pandemic and lockdown control measures threatened to disrupt routine childhood immunisation programmes with early reports suggesting uptake would fall. In response, public health bodies in Scotland and England collected national data for childhood immunisations on a weekly or monthly basis to allow for rapid analysis of trends. The aim of this study was to use these data to assess the impact of different phases of the pandemic on infant and preschool immunisation uptake rates. METHODS AND FINDINGS: We conducted an observational study using routinely collected data for the year prior to the pandemic (2019) and immediately before (22 January to March 2020), during (23 March to 26 July), and after (27 July to 4 October) the first UK "lockdown". Data were obtained for Scotland from the Public Health Scotland "COVID19 wider impacts on the health care system" dashboard and for England from ImmForm. Five vaccinations delivered at different ages were evaluated; 3 doses of "6-in-1" diphtheria, tetanus, pertussis, polio, Haemophilus influenzae type b, and hepatitis B vaccine (DTaP/IPV/Hib/HepB) and 2 doses of measles, mumps, and rubella (MMR) vaccine. This represented 439,754 invitations to be vaccinated in Scotland and 4.1 million for England. Uptake during the 2020 periods was compared to the previous year (2019) using binary logistic regression analysis. For Scotland, uptake within 4 weeks of a child becoming eligible by age was analysed along with geographical region and indices of deprivation. For Scotland and England, we assessed whether immunisations were up-to-date at approximately 6 months (all doses 6-in-1) and 16 to 18 months (first MMR) of age. We found that uptake within 4 weeks of eligibility in Scotland for all the 5 vaccines was higher during lockdown than in 2019. Differences ranged from 1.3% for first dose 6-in-1 vaccine (95.3 versus 94%, odds ratio [OR] compared to 2019 1.28, 95% confidence intervals [CIs] 1.18 to 1.39) to 14.3% for second MMR dose (66.1 versus 51.8%, OR compared to 2019 1.8, 95% CI 1.74 to 1.87). Significant increases in uptake were seen across all deprivation levels. In England, fewer children due to receive their immunisations during the lockdown period were up to date at 6 months (6-in-1) or 18 months (first dose MMR). The fall in percentage uptake ranged from 0.5% for first 6-in-1 (95.8 versus 96.3%, OR compared to 2019 0.89, 95% CI 0.86- to 0.91) to 2.1% for third 6-in-1 (86.6 versus 88.7%, OR compared to 2019 0.82, 95% CI 0.81 to 0.83). The use of routinely collected data used in this study was a limiting factor as detailed information on potential confounding factors were not available and we were unable to eliminate the possibility of seasonal trends in immunisation uptake. CONCLUSIONS: In this study, we observed that the national lockdown in Scotland was associated with an increase in timely childhood immunisation uptake; however, in England, uptake fell slightly. Reasons for the improved uptake in Scotland may include active measures taken to promote immunisation at local and national levels during this period and should be explored further. Promoting immunisation uptake and addressing potential vaccine hesitancy is particularly important given the ongoing pandemic and COVID-19 vaccination campaigns.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , Routinely Collected Health Data , SARS-CoV-2/drug effects , Child , Child, Preschool , Communicable Disease Control/methods , Female , Humans , Immunization Programs/statistics & numerical data , Infant , Male , SARS-CoV-2/pathogenicity , Vaccination/statistics & numerical data
15.
Neurocomputing ; 485: 36-46, 2022 May 07.
Article in English | MEDLINE | ID: covidwho-1683479

ABSTRACT

The front-line imaging modalities computed tomography (CT) and X-ray play important roles for triaging COVID patients. Thoracic CT has been accepted to have higher sensitivity than a chest X-ray for COVID diagnosis. Considering the limited access to resources (both hardware and trained personnel) and issues related to decontamination, CT may not be ideal for triaging suspected subjects. Artificial intelligence (AI) assisted X-ray based application for triaging and monitoring require experienced radiologists to identify COVID patients in a timely manner with the additional ability to delineate and quantify the disease region is seen as a promising solution for widespread clinical use. Our proposed solution differs from existing solutions presented by industry and academic communities. We demonstrate a functional AI model to triage by classifying and segmenting a single chest X-ray image, while the AI model is trained using both X-ray and CT data. We report on how such a multi-modal training process improves the solution compared to single modality (X-ray only) training. The multi-modal solution increases the AUC (area under the receiver operating characteristic curve) from 0.89 to 0.93 for a binary classification between COVID-19 and non-COVID-19 cases. It also positively impacts the Dice coefficient (0.59 to 0.62) for localizing the COVID-19 pathology. To compare the performance of experienced readers to the AI model, a reader study is also conducted. The AI model showed good consistency with respect to radiologists. The DICE score between two radiologists on the COVID group was 0.53 while the AI had a DICE value of 0.52 and 0.55 when compared to the segmentation done by the two radiologists separately. From a classification perspective, the AUCs of two readers was 0.87 and 0.81 while the AUC of the AI is 0.93 based on the reader study dataset. We also conducted a generalization study by comparing our method to the-state-art methods on independent datasets. The results show better performance from the proposed method. Leveraging multi-modal information for the development benefits the single-modal inferencing.

16.
BMJ Open ; 12(2): e054376, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1673438

ABSTRACT

OBJECTIVES: Develop a novel algorithm to categorise alcohol consumption using primary care electronic health records (EHRs) and asses its reliability by comparing this classification with self-reported alcohol consumption data obtained from the UK Biobank (UKB) cohort. DESIGN: Cross-sectional study. SETTING: The UKB, a population-based cohort with participants aged between 40 and 69 years recruited across the UK between 2006 and 2010. PARTICIPANTS: UKB participants from Scotland with linked primary care data. PRIMARY AND SECONDARY OUTCOME MEASURES: Create a rule-based multiclass algorithm to classify alcohol consumption reported by Scottish UKB participants and compare it with their classification using data present in primary care EHRs based on Read Codes. We evaluated agreement metrics (simple agreement and kappa statistic). RESULTS: Among the Scottish UKB participants, 18 838 (69%) had at least one Read Code related to alcohol consumption and were used in the classification. The agreement of alcohol consumption categories between UKB and primary care data, including assessments within 5 years was 59.6%, and kappa was 0.23 (95% CI 0.21 to 0.24). Differences in classification between the two sources were statistically significant (p<0.001); More individuals were classified as 'sensible drinkers' and in lower alcohol consumption levels in primary care records compared with the UKB. Agreement improved slightly when using only numerical values (k=0.29; 95% CI 0.27 to 0.31) and decreased when using qualitative descriptors only (k=0.18;95% CI 0.16 to 0.20). CONCLUSION: Our algorithm classifies alcohol consumption recorded in Primary Care EHRs into discrete meaningful categories. These results suggest that alcohol consumption may be underestimated in primary care EHRs. Using numerical values (alcohol units) may improve classification when compared with qualitative descriptors.


Subject(s)
Biological Specimen Banks , Electronic Health Records , Adult , Aged , Alcohol Drinking/epidemiology , Algorithms , Cross-Sectional Studies , Humans , Information Storage and Retrieval , Middle Aged , Primary Health Care , Reproducibility of Results , Scotland/epidemiology
17.
Lancet Respir Med ; 10(2): 191-198, 2022 02.
Article in English | MEDLINE | ID: covidwho-1641759

ABSTRACT

BACKGROUND: There is an urgent need to inform policy deliberations about whether children with asthma should be vaccinated against SARS-CoV-2 and, if so, which subset of children with asthma should be prioritised. We were asked by the UK's Joint Commission on Vaccination and Immunisation to undertake an urgent analysis to identify which children with asthma were at increased risk of serious COVID-19 outcomes. METHODS: This national incident cohort study was done in all children in Scotland aged 5-17 years who were included in the linked dataset of Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II). We used data from EAVE II to investigate the risk of COVID-19 hospitalisation among children with markers of uncontrolled asthma defined by either previous asthma hospital admission or oral corticosteroid prescription in the previous 2 years. A Cox proportional hazard model was used to derive hazard ratios (HRs) and 95% CIs for the association between asthma and COVID-19 hospital admission, stratified by markers of asthma control (previous asthma hospital admission and number of previous prescriptions for oral corticosteroids within 2 years of the study start date). Analyses were adjusted for age, sex, socioeconomic status, comorbidity, and previous hospital admission. FINDINGS: Between March 1, 2020, and July 27, 2021, 752 867 children were included in the EAVE II dataset, 63 463 (8·4%) of whom had clinician-diagnosed-and-recorded asthma. Of these, 4339 (6·8%) had RT-PCR confirmed SARS-CoV-2 infection. In those with confirmed infection, 67 (1·5%) were admitted to hospital with COVID-19. Among the 689 404 children without asthma, 40 231 (5·8%) had confirmed SARS-CoV-2 infections, of whom 382 (0·9%) were admitted to hospital with COVID-19. The rate of COVID-19 hospital admission was higher in children with poorly controlled asthma than in those with well controlled asthma or without asthma. When using previous hospital admission for asthma as the marker of uncontrolled asthma, the adjusted HR was 6·40 (95% CI 3·27-12·53) for those with poorly controlled asthma and 1·36 (1·02-1·80) for those with well controlled asthma, compared with those with no asthma. When using oral corticosteroid prescriptions as the marker of uncontrolled asthma, the adjusted HR was 3·38 (1·84-6·21) for those with three or more prescribed courses of corticosteroids, 3·53 (1·87-6·67) for those with two prescribed courses of corticosteroids, 1·52 (0·90-2·57) for those with one prescribed course of corticosteroids, and 1·34 (0·98-1·82) for those with no prescribed course, compared with those with no asthma. INTERPRETATION: School-aged children with asthma with previous recent hospital admission or two or more courses of oral corticosteroids are at markedly increased risk of COVID-19 hospital admission and should be considered a priority for vaccinations. This would translate into 9124 children across Scotland and an estimated 109 448 children across the UK. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, and Scottish Government.


Subject(s)
Asthma , COVID-19 , Adolescent , Asthma/complications , Asthma/drug therapy , Asthma/epidemiology , Child , Child, Preschool , Cohort Studies , Hospitalization , Hospitals , Humans , SARS-CoV-2 , Scotland/epidemiology
18.
Nat Med ; 28(3): 504-512, 2022 03.
Article in English | MEDLINE | ID: covidwho-1625798

ABSTRACT

Population-level data on COVID-19 vaccine uptake in pregnancy and SARS-CoV-2 infection outcomes are lacking. We describe COVID-19 vaccine uptake and SARS-CoV-2 infection in pregnant women in Scotland, using whole-population data from a national, prospective cohort. Between the start of a COVID-19 vaccine program in Scotland, on 8 December 2020 and 31 October 2021, 25,917 COVID-19 vaccinations were given to 18,457 pregnant women. Vaccine coverage was substantially lower in pregnant women than in the general female population of 18-44 years; 32.3% of women giving birth in October 2021 had two doses of vaccine compared to 77.4% in all women. The extended perinatal mortality rate for women who gave birth within 28 d of a COVID-19 diagnosis was 22.6 per 1,000 births (95% CI 12.9-38.5; pandemic background rate 5.6 per 1,000 births; 452 out of 80,456; 95% CI 5.1-6.2). Overall, 77.4% (3,833 out of 4,950; 95% CI 76.2-78.6) of SARS-CoV-2 infections, 90.9% (748 out of 823; 95% CI 88.7-92.7) of SARS-CoV-2 associated with hospital admission and 98% (102 out of 104; 95% CI 92.5-99.7) of SARS-CoV-2 associated with critical care admission, as well as all baby deaths, occurred in pregnant women who were unvaccinated at the time of COVID-19 diagnosis. Addressing low vaccine uptake rates in pregnant women is imperative to protect the health of women and babies in the ongoing pandemic.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines/therapeutic use , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , Pregnant Women , Prospective Studies , SARS-CoV-2 , Vaccination
19.
J Glob Health ; 11: 05026, 2021.
Article in English | MEDLINE | ID: covidwho-1614229

ABSTRACT

BACKGROUND: The dynamics of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and severity of disease among children and young people (CYP) across different settings are of considerable clinical, public health and societal interest. Severe COVID-19 cases, requiring hospitalisations, and deaths have been reported in some CYP suggesting a need to extend vaccinations to these age groups. As part of the ongoing Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) study, we aim to investigate the uptake, effectiveness and safety of COVID-19 vaccines in children and young people (CYP) aged 0 to 17 years in Scotland. Specifically, we will estimate: (i) uptake of vaccines against COVID-19, (ii) vaccine effectiveness (VE) against the outcomes of symptomatic SARS-CoV-2 infection, hospitalisation, intensive care unit (ICU) admissions, and death; (iii) VE for first/second dose timing among different age groups and risk groups; and (iv) the safety of vaccines. METHODS AND ANALYSIS: We will conduct an open prospective cohort study classifying exposure as time-varying. We will compare outcomes amongst first dose vaccinated and second dose vaccinated CYP to those not yet vaccinated. A Test Negative Design (TND) case control study will be nested within this national cohort to investigate VE against symptomatic infection. The primary outcomes will be (i) uptake of vaccines against COVID-19, (ii) time to COVID-19 infection, hospitalisation, ICU admissions or death, and (iii) adverse events related to vaccines. Vaccination status (unvaccinated, one dose and two doses) will be defined as a time-varying exposure. Data from multiple sources will be linked using a unique identifier. We will conduct descriptive analyses to explore trends in vaccine uptake, and association between different exposure variables and vaccine uptake will be determined using multivariable logistic regression models. VE will be assessed from time-dependent Cox models or Poisson regression models, adjusted for relevant confounders, including age, sex, socioeconomic status, and comorbidities. We will employ self-controlled study designs to determine the risk of adverse events following COVID-19 vaccination. ETHICS AND DISSEMINATION: Ethics approval was obtained from the National Research Ethics Committee, South East Scotland 02. We will present findings of this study at international conferences, in peer-reviewed journals and to policy-makers.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Case-Control Studies , Child , Humans , Pandemics , Prospective Studies , SARS-CoV-2 , Scotland/epidemiology , Vaccine Efficacy
20.
Lancet ; 399(10319): 25-35, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1586218

ABSTRACT

BACKGROUND: Reports suggest that COVID-19 vaccine effectiveness is decreasing, but whether this reflects waning or new SARS-CoV-2 variants-especially delta (B.1.617.2)-is unclear. We investigated the association between time since two doses of ChAdOx1 nCoV-19 vaccine and risk of severe COVID-19 outcomes in Scotland (where delta was dominant), with comparative analyses in Brazil (where delta was uncommon). METHODS: In this retrospective, population-based cohort study in Brazil and Scotland, we linked national databases from the EAVE II study in Scotland; and the COVID-19 Vaccination Campaign, Acute Respiratory Infection Suspected Cases, and Severe Acute Respiratory Infection/Illness datasets in Brazil) for vaccination, laboratory testing, clinical, and mortality data. We defined cohorts of adults (aged ≥18 years) who received two doses of ChAdOx1 nCoV-19 and compared rates of severe COVID-19 outcomes (ie, COVID-19 hospital admission or death) across fortnightly periods, relative to 2-3 weeks after the second dose. Entry to the Scotland cohort started from May 19, 2021, and entry to the Brazil cohort started from Jan 18, 2021. Follow-up in both cohorts was until Oct 25, 2021. Poisson regression was used to estimate rate ratios (RRs) and vaccine effectiveness, with 95% CIs. FINDINGS: 1 972 454 adults received two doses of ChAdOx1 nCoV-19 in Scotland and 42 558 839 in Brazil, with longer follow-up in Scotland because two-dose vaccination began earlier in Scotland than in Brazil. In Scotland, RRs for severe COVID-19 increased to 2·01 (95% CI 1·54-2·62) at 10-11 weeks, 3·01 (2·26-3·99) at 14-15 weeks, and 5·43 (4·00-7·38) at 18-19 weeks after the second dose. The pattern of results was similar in Brazil, with RRs of 2·29 (2·01-2·61) at 10-11 weeks, 3·10 (2·63-3·64) at 14-15 weeks, and 4·71 (3·83-5·78) at 18-19 weeks after the second dose. In Scotland, vaccine effectiveness decreased from 83·7% (95% CI 79·7-87·0) at 2-3 weeks, to 75·9% (72·9-78·6) at 14-15 weeks, and 63·7% (59·6-67·4) at 18-19 weeks after the second dose. In Brazil, vaccine effectiveness decreased from 86·4% (85·4-87·3) at 2-3 weeks, to 59·7% (54·6-64·2) at 14-15 weeks, and 42·2% (32·4-50·6) at 18-19 weeks. INTERPRETATION: We found waning vaccine protection of ChAdOx1 nCoV-19 against COVID-19 hospital admissions and deaths in both Scotland and Brazil, this becoming evident within three months of the second vaccine dose. Consideration needs to be given to providing booster vaccine doses for people who have received ChAdOx1 nCoV-19. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Fiocruz, Fazer o Bem Faz Bem Programme; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Vaccine Efficacy , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Hospitalization , Humans , Immunization, Secondary , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Scotland/epidemiology , Time Factors , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL